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theory of shells, etc. 
As an example, we will give expressions for the surface and normal components (5.1) as well 

as the spatial components (5.2) of the acceleration j=(ik.3!), of points on a surface moving 
through three-dimensional space 

(5.1) 

It was noted in /11/ that the expressions ja=(G‘/at)o given in /lo, 14/ do not hold in general, 
and the terms are connected with the change in the local basis at the surface. The latter 
must be taken into account in the expressions for the components of the acceleration, and (5.1) 
take this change into account. 
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ON THE SURFACE VISCOSITY AT THE BOUNDARY BETWEEN PHASES* 

A.G. BASHKIROV and G.A. KOROL'KOV 

The equations of motion of the interphase boundary are considered. It is shown 

that the conditions at the surface separating the phases obtained in /l, 2/ 
by different methods, are identical. The study of the dynamics of the fluid- 
fluid interface was initiated by Bussinesq /3/ who postulated a linear 
relationship between the surface stress tensor TaB and the strain rate 

tensor SaB , assigning two viscosity coefficients to the surface, the dilatation 
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coefficient k (the analog of volume viscosity) and the two-dimensional 
shearviscosity E . In the three-dimensional coordinate system two of 
whose axes u1 and ua coincide with the axes of any coordinate system at 
the surface and whose third axis us is perpendicular to the surface, his 
results have the form 

The greek indices take the values 1, 2; a comma denotes covariant differentiation, acrR is the 
metric tensor at the surface, v is the surface tension, ~1~ and ~3~ are components of the veloc- 
ity vector of a point on the surface, 11,~ are the components of the second fundamental quad- 
ratic form of the surface and Tg, is the Christoffel symbol on the surface. The equations 

obtained by Bussinesq were written in a special system of coordinates coinciding with the 
principal axes of the surface strain rate tensor. The equations of motion of the liquid 
interphase surface which can deform and move through space, were obtained later by Striven in 
/4/ in an arbitrary system of coordinates. 

While studing the problem of damping capillary waves on the sea surface with oil, 
Shuleikin and Ivanov (see /5/) proposed a hypothesis that the oil film has a viscosity related 
to the flexural motion of the film. The hypothesis was developed further in the papers by 
Goodrich /2, 6, 7/ who regarded the interphase surface as an anisotropic layer of finite thick- 
ness 6, with subsequent passage to the limit 6-0. For this reason Goodrich, unlike Striven, 
assumed that the relation connecting the surface stress and strain rate tensors has a three- 
dimensional form (the indices m,n,I,b take the values 1, 2, 3) 

T mn = Pm + -%nkl s k, 

where P,, and E,nnkl are not the isotropic, but axisymmetric tensors with the axis of symmetry 
coinciding uith the normal to the surface. This assumption led him to the conclusion that 
another surface viscosity exists when the surface undergoes flexural deformation (or a flex- 
ural surface viscosity). Goodrich in /6/ wrote the boundary conditions taking the flexural 
surface viscosity into account, but only for use when studying the propagation of capillary 
waves. Since the equations of motion of the surface were not derived, the flexural viscosity 
coefficient did not attract the attention of the investigators. After 20 years, in 1981, 
Goodrich obtained in /2/ the boundary conditions at an interphase surface of arbitrary form. 
He used the Gibbs method of the separating surface, describing the motion of each volume phase 
by the Navier-Stokes equations and obtaining the surface viscosity coefficients as the excess 
surface properties. 

In 1980 Bashkirov /l/ developed, in the framework of non-equilibrium statistical mechan- 
ics, an approach making possible the study of transport processes in a multicomponent hetero- 
phase system, and in particular at the boundary of two volume phases. Non-equilibrium pheno- 
mena were studied at the surface separating two mutally immiscible fluids. Assuming that the 
mass, energy and momentum surface densities were different from zero, the laws of conservation 
of mass and energy were derived, and the equations of hydrodynamics of the surface phase were 
obtained. 

In the local Cartesian system of coordinates and when there is no slippage at the bound- 
ary separating the phases, the equations describing the surface densities of mass, momentum 
and energy, have the form 

aa -~v.V,nP-irdiv,v-divzj,-T:V,v-an(J(*)-J~)) 
al * 

where V, is the surface gradient, div, is the surface divergence, II is the vector of the 
normal to the surface, directed towards phase 1, ok, Jr) are the diffusion fluxes of the k-th 
component in the volume phases (1) and (2), o(l), &I are the stress tensors in the volume 
phases (1) and (2), Jp’,Jf’ are heat fluxes in the volume phases (1) and (2),& is the surface 
density of the k-thcomponent, P=xPk,Jx is the diffusion surface flux of the k-th component, 

T is the surface stress tensor, ir 2s the surface energy density and J 
flux. The quantities with an upper bar denote expressions of the typz 

is the surface heat 

+m 
Pk = 1 dr Ipk (x, t) - iqf’ - (1 -h) P’,l’] 
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where z is a coordinate normal to the layer, pp),@) are the densities of the k-th component 
in the volume phase (1) and (Z), h is the Heaviside function equal to unity in phase (1) and 
to zero in phase (2), with a jump at the boundary surface. 

Expressions for the surface fluxes are given in /I./. Here we shall concern ourselves 
only with the expression for the surface stress tensor, which in the case when there is no 
slippage at the boundaries at the surface phase and of mass transfer between the phases,, such 
as evaporation and condensation, takes the form 

(1) 

Here I is unit tensor, E,, Ed are the coefficients of transverse and longitudinal dilatation 
viscosities, qn*'lL are the coefficients of shear and flexural surface viscosities, zero 
subscript means that the trace of the tensor is zero, and the superscript s denotes a sym- 
metric tensor, P.1. P 1 denote the transverse and longitudinal pressure and p('),~(~) are the 
pressures in the volume phases (1) and (2) at their boundaries with the surface phase. Since 
different approaches were used in /l, 2/ to study the dynamics of the interphase surface, 
comparison of their results is of interest. In the (ui} -coordinate system introduced earlier 
the expression for the surface stress tensor (1) has the form 

As 

PU 
is 
to 
is 

a rule, in describing surface phenomenathe surface tension is used, and not the longitudinal 
and transverse fi, pressure. Foraslightly curved equilibrium surface the surface tension 

defined as 7=p,-pfl. Adoption of this definition of y for the non-equilibrium case leads 
the appearance in the equations of motion of the interphase surface of the term V,pl which 
absent from Goodrich's paper /2/. The reason of this absence is, that Goodrich used, in 

addition to the above definition, another definition of the surface tension, namely Y*=-_B~, 
and assumed both of them to be equivalent. Indeed, under this assumption P, will not appear 
in the equations of motion. However, Y= Y' only in the case of equilibrium, or when the 
separating surface is chosen in a particular manner so that Fl=O. To compare the results 
of /l, 2/ we choose precisely this surface, and obtain from (2) the expressions for the 
tangential and normal component of the surface divergence of the surface stress tensor 

(div, 7$ = aa”T Ba, o = (v + 5 n e), B + r) ,/ PJ [vR, 00 - Wga). ,I - (3) 

-$$+bBa$ + ca (2Hbgu + b6’bgb) ‘I 

The relations are identical with the corresponding Goodrich /l/ expressions if we put El! -5~~ 
k,.E~=k,?,,=%n1='IN in them. The fact that (3) and (4) differ from (72) and (73) of /2/, 
is due to the error in computing the last term in (72) and the penultimate term in (73). 

The connection established here makes it possible to use with confidence the boundary 
conditions obtained in /l, 2/ at the surface separating two mutually immiscible liquids, in 
solving specific problems, We note that the coefficient of flexural viscosity introduced in 
these papers can exert a considerable influence on processes that are accompanied by strong 
deformation of the interphase surface. Since Goodrich did not take into account the slippage 
and mass transfer between the surface and volume phases,we have also restricted ourselves to 
this case. The general form of the boundary conditions are given in /l/. 

Note. In /8/ a phenomenological approach was used to obtain the relations at the separa- 
ting surface representing a special case of conditions derived in /l/, with only the inter- 
phase mass transfer taken into account. 
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FILTRATION IN INHOMOGENEOUS CURVED STRATA WITH A CERTAIN CLASS PERMEABILITY* 

A.P. CHERNYAEV 

Two-dimensional steady filtration flows of a homogeneous incompressible 
liquid (obeying D'Arcy's law) in inhomogeneous curved strata with variable 
permeability is studied. A novel extensive class of permeabilities for 
which the pressure head function is written in explicit form is obtained 
and studied. The pressure head function is given in explicit form for 
flows from sources situated at any point of the stratum. 

The basic equations describing two-dimensional flows of steady filtration of a homogene- 
ous incompressible liquid in inhomogeneous curved strata can be written in the form /l/ 

a@ alp a0 alIr 
P,,=ay'Pay=-az (1) 

Here Q, is the pressure head function, '4 is the stream function, p= k&l is the permeability 
of the stratum /2/, k is the coefficient of filtration and M is the stratum thickness. We 
will assume that an isothermal grid is chosen at the surface at the foot of the stratum with 
coordinates x and y /l/, such that P=P(y). We also assume that P(u)>0 and, that a function 

?. (I) # 0 exists such that the following conditions hold /3/: 

AP =eM, LPI =eM (2) 

Let the solution of (1) have a singularity at the point (zO,go). Eliminating H we obtain 

P(Y) [$g+qk] +P’(Y)$Lo* (zr Y) # (201 YO) (3) 

Let us investigate the basic solutions corresponding to the source (sink), since other 
singularities can be obtained from the source using well-known techniques /l/. Classical 
methods of obtaining the fundamental solutions for more general equations are well known /4/. 
However, the solutions obtained by theses methods are very abstract and cannot be used in 
filtration problems. It was for this reason that P(y) were sought for which the fundamental 
solution could be obtained in a form suitable for solving specific problems /5, 6/. In /7/ 
an arbitrarily wide class of P(y) was obtained including the already known cases /5, 6/ as 
well as new cases in which the solution of the source-sink type is written in explicit form. 
The present paper deals with the fundamental source-type solutions for such P(u) , which were 
not encountered in the literature until /7/, and completes the investigation carried out in 
Sect.5 of /7/. To formulate the basic result of this work, we introduce the following defini- 
tion. 

Definition. We shall say that @ES'@) (/3/, is a fundamental source-type solution of 
equation (3) at the point (z,,yO), if @ satisfies the equation 
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